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Chapter 4 One Dimensional Kinematics 
 

 
In the first place, what do we mean by time and space? It turns out that these deep 
philosophical questions have to be analyzed very carefully in physics, and this is 
not easy to do. The theory of relativity shows that our ideas of space and time are 
not as simple as one might imagine at first sight. However, for our present 
purposes, for the accuracy that we need at first, we need not be very careful about 
defining things precisely. Perhaps you say, “That’s a terrible thing—I learned 
that in science we have to define everything precisely.” We cannot define 
anything precisely! If we attempt to, we get into that paralysis of thought that 
comes to philosophers, who sit opposite each other, one saying to the other, “You 
don’t know what you are talking about!” The second one says. “What do you 
mean by know? What do you mean by talking? What do you mean by you?”, and 
so on. In order to be able to talk constructively, we just have to agree that we are 
talking roughly about the same thing. You know as much about time as you need 
for the present, but remember that there are some subtleties that have to be 
discussed; we shall discuss them later.1   
 
               Richard Feynman 

 
4.1 Introduction 
 
Kinematics is the mathematical description of motion. The term is derived from the 
Greek word kinema, meaning movement. In order to quantify motion, a mathematical 
coordinate system, called a reference frame, is used to describe space and time. Once a 
reference frame has been chosen, we can introduce the physical concepts of position, 
velocity and acceleration in a mathematically precise manner. Figure 4.1 shows a 
Cartesian coordinate system in one dimension with unit vector î  pointing in the direction 
of increasing  x -coordinate. 
 

 
 

Figure 4.1 A one-dimensional Cartesian coordinate system. 
 
 

                                                
1 Richard P. Feynman, Robert B. Leighton, Matthew Sands, The Feynman Lectures on 
Physics, Addison-Wesley, Reading, Massachusetts, (1963), p. 12-2. 
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4.2 Position, Time Interval, Displacement 
 
4.2.1 Position 
 
Consider an object moving in one dimension. We denote the position coordinate of the 
center of mass of the object with respect to the choice of origin by ( )x t . The position 
coordinate is a function of time and can be positive, zero, or negative, depending on the 
location of the object. The position has both direction and magnitude, and hence is a 
vector (Figure 4.2),  
 ˆ( ) ( )t x t=x i . (4.2.1) 
  
We denote the position coordinate of the center of the mass at 0t =  by the symbol 
0 ( 0)x x t≡ = . The SI unit for position is the meter [m]. 

 

 
 

Figure 4.2 The position vector, with reference to a chosen origin. 
 
4.2.2 Time Interval 
 
Consider a closed interval of time 1 2[ , ]t t . We characterize this time interval by the 
difference in endpoints of the interval such that 
 
 2 1t t tΔ = − . (4.2.2) 
 
The SI units for time intervals are seconds [s]. 
 
4.2.3 Displacement 
 

The displacement, of a body between times 1t  and 2t  (Figure 4.3) is defined to be 
the change in position coordinate of the body 
 
 2 1

ˆ ˆ( ( ) ( )) ( )x t x t x tΔ ≡ − ≡ Δx i i . (4.2.3) 
 

Displacement is a vector quantity. 
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Figure 4.3 The displacement vector of an object over a time interval is the vector 
difference between the two position vectors 

 
4.3 Velocity 
 
When describing the motion of objects, words like “speed” and “velocity” are used in 
common language; however when introducing a mathematical description of motion, we 
need to define these terms precisely. Our procedure will be to define average quantities 
for finite intervals of time and then examine what happens in the limit as the time interval 
becomes infinitesimally small. This will lead us to the mathematical concept that velocity 
at an instant in time is the derivative of the position with respect to time.  
 
4.3.1 Average Velocity 

 
The component of the average velocity, xv , for a time interval tΔ  is defined to be 
the displacement xΔ  divided by the time interval tΔ ,  
 

 x
x

v
t

Δ≡
Δ

. (4.3.1) 

 
The average velocity vector is then  
 

 ˆ ˆ( ) ( )x
x

t v t
t

Δ≡ =
Δ

v i i . (4.3.2) 

 
The SI units for average velocity are meters per second 1m s−⎡ ⎤⋅⎣ ⎦ . 
 
4.3.3 Instantaneous Velocity 
 
Consider a body moving in one direction. We denote the position coordinate of the body 
by ( )x t , with initial position 0x  at time 0t = .  Consider the time interval [ , ]t t t+ Δ . The 
average velocity for the interval tΔ  is the slope of the line connecting the points ( , ( ))t x t  
and   (t + Δt, x(t + Δt)) . The slope, the rise over the run, is the change in position over the 
change in time, and is given by 
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 rise ( ) ( )
runx

x x t t x t
v

t t
Δ + Δ −≡ = =
Δ Δ

. (4.3.3) 

 
Let’s see what happens to the average velocity as we shrink the size of the time interval. 
The slope of the line connecting the points ( , ( ))t x t  and   (t + Δt, x(t + Δt))  approaches the 
slope of the tangent line to the curve ( )x t  at the time t  (Figure 4.4). 
 

 
 

Figure 4.4 Graph of position vs. time showing the tangent line at time t . 
 
 In order to define the limiting value for the slope at any time, we choose a time 
interval [ , ]t t t+ Δ . For each value of tΔ , we calculate the average velocity. As 0tΔ → , 
we generate a sequence of average velocities. The limiting value of this sequence is 
defined to be the x -component of the instantaneous velocity at the time t . 
 

The x -component of instantaneous velocity at time t  is given by the 
slope of the tangent line to the curve of position vs. time at time t : 
 

 
0 0 0

( ) ( )( ) lim lim limx xt t t

x x t t x t dx
v t v

t t dtΔ → Δ → Δ →

Δ + Δ −≡ = = ≡
Δ Δ

. (4.3.4) 

 
The instantaneous velocity vector is then 
 
 ˆ( ) ( )xt v t=v i . (4.3.5) 
 
Example 4.1 Determining Velocity from Position 
 
Consider an object that is moving along the x -coordinate axis represented by the 
equation  

 2
0
1( )
2

x t x bt= +  (4.3.6) 
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where 0x  is the initial position of the object at 0t = .  
 
We can explicitly calculate the x -component of instantaneous velocity from Equation 
(4.3.4) by first calculating the displacement in the x -direction, ( ) ( )x x t t x tΔ = + Δ − . We 
need to calculate the position at time t t+ Δ , 
 

 ( )2 2 2
0 0
1 1( ) ( ) 2
2 2

x t t x b t t x b t t t t+ Δ = + + Δ = + + Δ + Δ . (4.3.7) 

 
Then the instantaneous velocity is  
 

 

2 2 2
0 0

0 0

1 1( 2 )
( ) ( ) 2 2( ) lim limx t t

x b t t t t x bt
x t t x t

v t
t tΔ → Δ →

⎛ ⎞ ⎛ ⎞+ + Δ + Δ − +⎜ ⎟ ⎜ ⎟+ Δ − ⎝ ⎠ ⎝ ⎠= =
Δ Δ

. (4.3.8) 

 
This expression reduces to 

 
0

1( ) lim
2x t

v t bt b t
Δ →

⎛ ⎞= + Δ⎜ ⎟⎝ ⎠
. (4.3.9) 

 
The first term is independent of the interval tΔ  and the second term vanishes because the 
limit as 0tΔ →  of tΔ  is zero. Thus the instantaneous velocity at time t is  
 
 ( )xv t bt= . (4.3.10) 
 
In Figure 4.5 we graph the instantaneous velocity, ( )xv t , as a function of time t . 
 

 
 
Figure 4.5 A graph of instantaneous velocity as a function of time. 
 
4.4 Acceleration 
 
We shall apply the same physical and mathematical procedure for defining acceleration, 
the rate of change of velocity.  We first consider how the instantaneous velocity changes 
over an interval of time and then take the limit as the time interval approaches zero.  
 
4.4.1 Average Acceleration 
 
Acceleration is the quantity that measures a change in velocity over a particular time 
interval. Suppose during a time interval tΔ  a body undergoes a change in velocity  
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 ( ) ( )t t tΔ = + Δ −v v v   . (4.4.1) 
 
The change in the x -component of the velocity, xvΔ , for the time interval [ , ]t t t+ Δ  is 
then 
 ( ) ( )x x xv v t t v tΔ = + Δ − . (4.4.2) 
 

The x -component of the average acceleration for the time interval tΔ  is defined 
to be 
 

 ( ( ) ( ))ˆ ˆ ˆ ˆx x x x
x

v v t t v t v
a

t t t
Δ + Δ − Δ= ≡ = =
Δ Δ Δ

a i i i i . (4.4.3) 

 
The SI units for average acceleration are meters per second squared, 2[m s ]−⋅ . 
 
4.4.2 Instantaneous Acceleration  
  
On a graph of the x -component of velocity vs. time, the average acceleration for a time 
interval tΔ  is the slope of the straight line connecting the two points ( , ( ))xt v t  and 
( , ( ))xt t v t t+ Δ + Δ . In order to define the x -component of the instantaneous acceleration 
at time t , we employ the same limiting argument as we did when we defined the 
instantaneous velocity in terms of the slope of the tangent line. 
 
 

The x -component of the instantaneous acceleration at time t  is the limit of the 
slope of the tangent line at time t  of the graph of the x -component of the velocity 
as a function of time, 
 

 
0 0 0

( ( ) ( ))( ) lim lim limx x x x
x xt t t

v t t v t v dv
a t a

t t dtΔ → Δ → Δ →

+ Δ − Δ≡ = = ≡
Δ Δ

. (4.4.4) 

 
The instantaneous acceleration vector is then 
 
 ˆ( ) ( )xt a t=a i . (4.4.5) 
 
In Figure 4.6 we illustrate this geometrical construction. Because the velocity is the 
derivative of position with respect to time, the x -component of the acceleration is the 
second derivative of the position function, 
 

 
2

2
x

x
dv d x

a
dt dt

= = . (4.4.6) 
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Figure 4.6 Graph of velocity vs. time showing the tangent line at time t . 

 
  
Example 4.2 Determining Acceleration from Velocity 
 
Let’s continue Example 4.1, in which the position function for the body is given by 

2
0 (1/ 2)x x bt= + , and the x -component of the velocity is xv bt= . The x -component of 

the instantaneous acceleration at time t  is the limit of the slope of the tangent line at time 
t  of the graph of the x -component of the velocity as a function of time (Figure 4.5) 
 

 
0 0

( ) ( )lim limx x x
x t t

dv v t t v t bt b t bt
a b

dt t tΔ → Δ →

+ Δ − + Δ −= = = =
Δ Δ

. (4.4.7) 

 
Note that in Equation (4.4.7), the ratio /v tΔ Δ  is independent of  t , consistent with the 
constant slope of the graph in Figure 4.5. 
 
4.5 Constant Acceleration 
 
Let’s consider a body undergoing constant acceleration for a time interval [0, ]t tΔ = . 
When the acceleration xa  is a constant, the average acceleration is equal to the 
instantaneous acceleration. Denote the x -component of the velocity at time 0t =  by 
,0 ( 0)x xv v t≡ = . Therefore the x -component of the acceleration is given by 

 

 ,0( )x xx
x x

v t vv
a a

t t
−Δ= = =

Δ
. (4.5.1) 

 
Thus the velocity as a function of time is given by 
 
 ,0( )x x xv t v a t= + . (4.5.2) 
 
When the acceleration is constant, the velocity is a linear function of time.  
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4.5.1 Velocity: Area Under the Acceleration vs. Time Graph 
 
In Figure 4.7, the x -component of the acceleration is graphed as a function of time. 
 

 
 

Figure 4.7 Graph of the x -component of the acceleration for xa  constant as a function 
of time. 

 
The area under the acceleration vs. time graph, for the time interval 0t t tΔ = − = , is 

 
 Area( , )x xa t a t≡ . (4.5.3) 
 
Using the definition of average acceleration given above,  
 
 ,0Area( , ) ( )x x x x xa t a t v v t v≡ = Δ = − . (4.5.4) 
 
4.5.2 Displacement: Area Under the Velocity vs. Time Graph  
 
In Figure 4.8, we graph the x -component of the velocity vs. time curve.  
 

 
Figure 4.8 Graph of velocity as a function of time for xa  constant. 

 
The region under the velocity vs. time curve is a trapezoid, formed from a rectangle and a 
triangle and the area of the trapezoid is given by 
 

 
  
Area(vx ,t) = vx ,0 t + 1

2
(vx (t)− vx ,0 )t . (4.5.5) 

 
Substituting for the velocity (Equation (4.5.2)) yields 
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 2
,0 ,0 ,0 ,0

1 1Area( , ) ( )
2 2x x x x x x xv t v t v a t v t v t a t= + + − = + . (4.5.6) 

  

 
 

Figure 4.9 The average velocity over a time interval. 
 
We can then determine the average velocity by adding the initial and final velocities and 
dividing by a factor of two (Figure 4.9). 
 

 ,0
1 ( ( ) )
2x x xv v t v= + . (4.5.7) 

 
The above method for determining the average velocity differs from the definition of 
average velocity in Equation (4.3.1). When the acceleration is constant over a time 
interval, the two methods will give identical results. Substitute into Equation (4.5.7) the 
x -component of the velocity, Equation (4.5.2), to yield 
 

 
  
vx =

1
2

(vx (t) + vx ,0 ) =
1
2

((vx ,0 + ax t) + vx ,0 ) = vx ,0 +
1
2

ax t . (4.5.8) 

 
Recall Equation (4.3.1); the average velocity is the displacement divided by the time 
interval (note we are now using the definition of average velocity that always holds, for 
non-constant as well as constant acceleration).  The displacement is equal to  
 
 0( ) xx x t x v tΔ ≡ − = . (4.5.9) 
 
Substituting Equation (4.5.8) into Equation (4.5.9) shows that displacement is given by 
 

 2
0 ,0

1( )
2x x xx x t x v t v t a tΔ ≡ − = = + . (4.5.10) 

 
Now compare Equation (4.5.10) to Equation (4.5.6) to conclude that the displacement is 
equal to the area under the graph of the x -component of the velocity vs. time,  
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 2
0 ,0

1( ) Area( , ),
2x x xx x t x v t a t v tΔ ≡ − = + =  (4.5.11) 

 
and so we can solve Equation (4.5.11) for  the position as a function of time, 
 

 2
0 ,0

1( )
2x xx t x v t a t= + + . (4.5.12) 

 
Figure 4.10 shows a graph of this equation. Notice that at 0t =  the slope may be in 
general non-zero, corresponding to the initial velocity component ,0xv . 
 

 
Figure 4.10 Graph of position vs. time for constant acceleration. 

 
Example 4.3 Accelerating Car 
 
A car, starting at rest at   t = 0 , accelerates in a straight line for  100 m  with an unknown 
constant acceleration. It reaches a speed of  20 m ⋅ s−1  and then continues at this speed for 
another 10 s . (a) Write down the equations for position and velocity of the car as a 
function of time. (b) How long was the car accelerating? (c) What was the magnitude of 
the acceleration? (d) Plot speed vs. time, acceleration vs. time, and position vs. time for 
the entire motion. (e) What was the average velocity for the entire trip? 
 
Solutions: (a) For the acceleration  a , the position   x(t)  and velocity   v(t)  as a function of 
time  t  for a car starting from rest are 

 

 
  

x(t) = (1/ 2)at2

vx (t) = at.
 (4.5.13) 

 
b) Denote the time interval during which the car accelerated by   t1 . We know that the 

position   x(t1) = 100m  and   v(t1) = 20 m ⋅ s−1 . Note that we can eliminate the acceleration 
 a  between the Equations (4.5.13) to obtain  
 
   x(t) = (1 / 2)v(t) t . (4.5.14) 
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We can solve this equation for time as a function of the distance and the final speed 
giving 

 
  
t = 2

x(t)
v(t)

. (4.5.15) 

 
We can now substitute our known values for the position   x(t1) = 100m  and 

  v(t1) = 20 m ⋅ s−1  and solve for the time interval that the car has accelerated 
 

 
  
t1 = 2

x(t1)
v(t1)

= 2
100 m

20 m ⋅ s−1 = 10s . (4.5.16) 

 
c) We can substitute into either of the expressions in Equation (4.5.13); the second is 
slightly easier to use, 

 
  
a =

v(t1)
t1

=
20 m ⋅ s−1

10s
= 2.0m ⋅ s−2 . (4.5.17) 

 
d) The  x -component of acceleration vs. time,  x -component of the velocity vs. time, and 
the position vs. time are piece-wise functions given by 
 

  
ax (t) = 2 m ⋅s-2; 0 < t <10 s

0; 10 s < t < 20 s
⎧
⎨
⎩⎪

, 

 

  
vx (t) =

(2 m ⋅ s-2 ) t; 0 < t < 10 s
20 m ⋅ s-1; 10 s < t < 20 s

⎧
⎨
⎪

⎩⎪
, 

 

  
x(t) =

(1/ 2)(2 m ⋅s-2 )t2; 0 < t <10 s
100 m +(20 m ⋅s-2 )( t −10 s); 10 s < t < 20 s

⎧
⎨
⎪

⎩⎪
. 

 
The graphs of the  x -component of acceleration vs. time,  x -component of the velocity vs. 
time, and the position vs. time are shown in Figure 4.11 

 
(e) After accelerating, the car travels for an additional ten seconds at constant speed and 
during this interval the car travels an additional distance   Δx = v(t1) ×10s=200m  (note 
that this is twice the distance traveled during the  10s  of acceleration), so the total 
distance traveled is  300m  and the total time is  20s , for an average velocity of 
 

 
  
vave =

300m
20s

=15m ⋅s−1 . (4.5.18) 
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Figure 4.11 Graphs of the x-components of acceleration, velocity and position as piece-
wise functions of time 
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Example 4.4 Catching a Bus 
 
At the instant a traffic light turns green, a car starts from rest with a given constant 
acceleration,  5.0 ×10−1 m ⋅ s-2 . Just as the light turns green, a bus, traveling with a given 
constant speed,  1.6 ×101 m ⋅ s-1 , passes the car. The car speeds up and passes the bus 
some time later. How far down the road has the car traveled, when the car passes the bus?  
 
Solution: In this example we will illustrate the Polya approach to problem solving. 
 
1. Understand – get a conceptual grasp of the problem  
 
Think about the problem. How many objects are involved in this problem? Two, the bus 
and the car. How many different stages of motion are there for each object? Each object 
has one stage of motion. For each object, how many independent directions are needed to 
describe the motion of that object?  We need only one independent direction for each 
object. What information can you infer from the problem? The acceleration of the car, the 
velocity of the bus, and that the position of the car and the bus are identical when the bus 
just passes the car. Sketch qualitatively the position of the car and bus as a function of 
time (Figure 4.12).  
 

 
 

Figure 4.12 Position vs. time of the car and bus. 
 
What choice of coordinate system best suits the problem? Cartesian coordinates with a 
choice of coordinate system in which the car and bus begin at the origin and travel along 
the positive x-axis (Figure 4.13). Draw arrows for the position coordinate function for the 
car and bus. 
 

 
 

Figure 4.13 A coordinate system for car and bus. 
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2. Devise a Plan - set up a procedure to obtain the desired solution  
 
Write down the complete set of equations for the position and velocity functions. There 
are two objects, the car and the bus. Choose a coordinate system with the origin at the 
traffic light with the car and bus traveling in the positive x-direction. Call the position 
function of the car,   x1(t) , and the position function for the bus,   x2 (t) . In general the 
position and velocity functions of the car are given by 
 

  
x1(t) = x1(0)+ vx1

(0)t + 1
2

ax1
t2 , 

  
vx1

(t) = vx1
(0)+ ax1

t . 

 
In this example, using both the information from the problem and our choice of 
coordinate system, the initial position and initial velocity of the car are both zero, 

  x1(0) = 0  and 
  
vx1

(0) = 0 , and the acceleration of the car is non-zero 
  
ax1

≠ 0 . So the 

position and velocity of the car is given by 
 

  
x1(t) =

1
2

ax1
t2 , 

  
vx1

(t) = ax1
t . 

 
The initial position of the bus is zero,   x2(0) = 0 , the initial velocity of the bus is non-zero, 

  
vx2

(0) ≠ 0 , and the acceleration of the bus is zero, 
  
ax2

= 0 . Therefore the velocity is 

constant, 
  
vx2

(t) = vx2
(0) , and the position function for the bus is given by 

  
x2(t) = vx2

(0)t .  

 
Identify any specified quantities. The problem states: “The car speeds up and passes the 
bus some time later.” What analytic condition best expresses this condition? Let  t = ta  
correspond to the time that the car passes the bus. Then at that time, the position 
functions of the bus and car are equal,   x1(ta ) = x2 (ta ) . 
 
How many quantities need to be specified in order to find a solution? There are three 
independent equations at time  t = ta : the equations for position and velocity of the car 

  
x1(ta ) = 1

2
ax1

ta
2 , 

  
vx1

(ta ) = ax1
ta , and the equation for the position of the bus, 

  
x2(t) = vx2

(0)t . There is one ‘constraint condition’   x1(ta ) = x2(ta ) . 

 
The six quantities that are as yet unspecified are   x1(ta ) ,   x2 (ta ) , 

  
vx1

(ta ) , 
  
vx2

(0) ,
  
ax1

,  ta . 

Therefore you need to be given at least two numerical values in order to completely 
specify all the quantities; for example the distance where the car and bus meet. The 



 4-15 

problem specifying the initial velocity of the bus, 
  
vx2

(0) , and the acceleration, 
  
ax1

, of the 

car with given values.  
 
3. Carry our your plan – solve the problem! 
 
The number of independent equations is equal to the number of unknowns so you can 
design a strategy for solving the system of equations for the distance the car has traveled 
in terms of the velocity of the bus 

  
vx2

(0)  and the acceleration of the car 
  
ax1

, when the car 

passes the bus. 
 
Let’s use the constraint condition to solve for the time  t = ta  where the car and bus meet. 
Then we can use either of the position functions to find out where this occurs. Thus the 
constraint condition,   x1(ta ) = x2 (ta )  becomes 

  
(1/ 2)ax1

ta
2 = vx2

(0)ta . We can solve for this 

time, 
  
ta = 2vx2

(0) / ax1
. Therefore the position of the car at the meeting point is 

 

  
x1(ta ) = 1

2
ax1

ta
2 = 1

2
ax ,1 2

vx2
(0)

ax1

⎛

⎝
⎜

⎞

⎠
⎟

2

=
2vx2

(0)2

ax1

. 

 
4. Look Back – check your solution and method of solution 
 
Check your algebra. Do your units agree? The units look good since in the answer the 
two sides agree in units, 

 
m⎡⎣ ⎤⎦ = m2⋅s-2 / m⋅s-2⎡⎣ ⎤⎦  and the algebra checks. Substitute in 

numbers. Suppose 
  
ax1

= 5.0×10−1 m ⋅s-2  and 
  
vx2

(0) = 1.6×101 m ⋅s-1 , Introduce your 

numerical values for 
  
vx2

(0)  and 
  
ax1

, and solve numerically for the distance the car has 

traveled when the bus just passes the car. Then 
 

  
ta =

2vx2
(0)

ax1

=
2( ) 1.6×101 m ⋅s-1( )
5.0×10−1 m ⋅s-2( ) = 6.4×101s , 

  
x1(ta ) =

2vx2
(0)2

axL1

=
2( ) 1.6×101 m ⋅s-1( )2

5.0×10−1 m ⋅s-2( ) = 1.0×103m . 

 
Check your results. Once you have an answer, think about whether it agrees with your 
estimate of what it should be. Some very careless errors can be caught at this point. Is it 
possible that when the car just passes the bus, the car and bus have the same velocity? 
Then there would be an additional constraint condition at time  t = ta , that the velocities 
are equal,   

vx ,1(ta ) = vx ,20 . Thus   
vx ,1(ta ) = ax ,1ta = vx ,20  implies that   

ta = vx ,20 / ax ,1 . From our 
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other result for the time of intersection 
  
ta = 2vx2

(0) / ax1
. But these two results contradict 

each other, so it is not possible. 
 
4.6 One Dimensional Kinematics Non-Constant Acceleration 
 
4.6.1 Change of Velocity as the Integral of Non-constant Acceleration  
 
When the acceleration is a non-constant function, we would like to know how the  x -
component of the velocity changes for a time interval   Δt = [0, t] . Since the acceleration is 
non-constant we cannot simply multiply the acceleration by the time interval. We shall 
calculate the change in the x -component of the velocity for a small time interval 

  Δti ≡ [ti , ti+1]  and sum over these results. We then take the limit as the time intervals 
become very small and the summation becomes an integral of the x -component of the 
acceleration. 
 
 For a time interval   Δt = [0, t] , we divide the interval up into N  small intervals 

  Δti ≡ [ti , ti+1] , where the index   i = 1, 2, ... , N , and   t1 ≡ 0 ,   tN+1 ≡ t . Over the interval  Δti , 

we can approximate the acceleration as a constant,   ax (ti ) . Then the change in the x -
component of the velocity is the area under the acceleration vs. time curve, 
  
 

  
Δvx ,i ≡ vx (ti+1) − vx (ti ) = ax (ti ) Δti + Ei , (4.6.1) 

 
where  Ei  is the error term (see Figure 4.14a).  Then the sum of the changes in the x -
component of the velocity is  
 

 
   

Δvx , i
i=1

i=N

∑ = (vx (t2 )− vx (t1 = 0))+ (vx (t3)− vx (t2 ))++ (vx (tN+1 = t)− vx (tN )).  (4.6.2) 

 
In this summation pairs of terms of the form 

  
vx (t2 ) − vx (t2 )( ) = 0  sum to zero, and the 

overall sum becomes 

 
  
vx (t) − vx (0) = Δvx ,i

i=1

i=N

∑ . (4.6.3) 

 
Substituting Equation (4.6.1) into Equation (4.6.3), 
 

 
  
vx (t) − vx (0) = Δvx ,i

i=1

i=N

∑ = ax (ti ) Δti
i=1

i=N

∑ + Ei
i=1

i=N

∑ . (4.6.4) 

 
We now approximate the area under the graph in Figure 4.14a by summing up all the 
rectangular area terms, 
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Area N (ax ,t) = ax (ti ) Δti

i=1

i=N

∑ . (4.6.5) 

 

       
 

Figures 4.14a and 4.14b Approximating the area under the graph of the x -component of 
the acceleration vs. time 

 
 
Suppose we make a finer subdivision of the time interval   Δt = [0, t]  by increasing N , as 
shown in Figure 4.14b. The error in the approximation of the area decreases. We now 
take the limit as N  approaches infinity and the size of each interval itΔ  approaches zero. 
For each value of N , the summation in Equation (4.6.5) gives a value for   Area N (ax ,t) , 
and we generate a sequence of values 
 
   {Area1(ax ,t), Area2(ax ,t), ..., Area N (ax ,t)} . (4.6.6) 
 
The limit of this sequence is the area,   Area(ax ,t) , under the graph of the x -component of 
the acceleration vs. time. When taking the limit, the error term vanishes in Equation 
(4.6.4), 

 
  
lim
N→∞

Ei
i=1

i=N

∑ = 0 . (4.6.7) 

 
Therefore in the limit as N  approaches infinity, Equation (4.6.4) becomes  
 

 
  
vx (t) − vx (0) = lim

N→∞
ax (ti ) Δti

i=1

i=N

∑ + lim
N→∞

Ei
i=1

i=N

∑ = lim
N→∞

ax (ti ) Δti
i=1

i=N

∑ = Area(ax ,t) , (4.6.8) 

 
and thus the change in the x -component of the velocity is equal to the area under the 
graph of x -component of the acceleration vs. time. 
 

The integral of the x -component of the acceleration for the interval   [0, t]  is 
defined to be the limit of the sequence of areas,   Area N (ax ,t) , and is denoted by 



 4-18 

 

 
  

ax ( ′t ) d ′t
′t =0

′t = t

∫ ≡ lim
Δti →0

ax (ti ) Δti = Area(ax ,t)
i=1

i=N

∑ . (4.6.9) 

 
Equation (4.6.8) shows that the change in the x –component of the velocity is the integral 
of the x -component of the acceleration with respect to time. 
 

 
  
vx (t) − vx (0) = ax ( ′t ) d ′t

′t =0

′t = t

∫ . (4.6.10) 

 
Using integration techniques, we can in principle find the expressions for the velocity as 
a function of time for any acceleration.  
 
4.6.2 Integral of Velocity 
 
We can repeat the same argument for approximating the area   Area(vx , t)  under the graph 
of the x -component of the velocity vs. time by subdividing the time interval into N  
intervals and approximating the area by 
 

 
  
Area N (ax , t) = vx (ti ) Δti

i=1

i=N

∑ . (4.6.11) 

 
The displacement for a time interval   Δt = [0, t]  is limit of the sequence of sums 

  Area N (ax , t) , 

 
  
Δx = x(t) − x(0) = lim

N→∞
vx (ti ) Δti

i=1

i=N

∑ . (4.6.12) 

 
This approximation is shown in Figure 4.15. 
 

The integral of the x -component of the velocity for the interval   [0, t]  is the limit 
of the sequence of areas,   Area N (ax , t) , and is denoted by 
 

 
  

vx ( ′t ) d ′t
′t =0

′t = t

∫ ≡ lim
Δti →0

vx (ti ) Δti = Area(vx ,t)
i=1

i=N

∑ . (4.6.13) 
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Figure 4.15 Approximating the area under the graph of the x -component of the velocity 
vs. time.   
 
The displacement is then the integral of the x -component of the velocity with respect to 
time, 

 
  
Δx = x(t) − x(0) = vx ( ′t ) d ′t

′t =0

′t = t

∫ . (4.6.14) 

 
Using integration techniques, we can in principle find the expressions for the position as 
a function of time for any acceleration.  
 
Example 4.5 Non-constant Acceleration  
 
Let’s consider a case in which the acceleration,   ax (t) , is not constant in time, 
 
   ax (t) = b0 + b1 t + b2 t2 . (4.6.15) 
 
 The graph of the x -component of the acceleration vs. time is shown in Figure 4.16 
 

 
Figure 4.16 Non-constant acceleration vs. time graph. 

 



 4-20 

Let’s find the change in the x -component of the velocity as a function of time. Denote 
the initial velocity at 0t =  by   

vx ,0 ≡ vx (t = 0) . Then,  
  

 
  
vx (t) − vx ,0 = ax ( ′t ) d ′t

′t =0

′t = t

∫ = (bo + b1 ′t + b2 ′t 2 ) d ′t
′t =0

′t = t

∫ = b0 t +
b1 t2

2
+

b2 t3

3
. (4.6.16) 

 
The x -component of the velocity as a function in time is then 
 

 
  
vx (t) = vx ,0 + b0 t +

b1 t2

2
+

b2 t3

3
. (4.6.17) 

 
Denote the initial position by   x0 ≡ x(t = 0) . The displacement as a function of time is the 
integral   

 
  
x(t) − x0 = vx ( ′t ) d ′t

′t =0

′t = t

∫ .  (4.6.18) 

 
Use Equation (4.6.17) for the x -component of the velocity in Equation (4.6.18) to find 
 

 
  
x(t) − x0 = vx ,0 + b0 ′t +

b1 ′t 2

2
+

b2 ′t 3

3
⎛

⎝
⎜

⎞

⎠
⎟ d ′t

′t =0

′t = t

∫ = vx ,0 t +
b0 t2

2
+

b1 t3

6
+

b2 t4

12
.  (4.6.19) 

 
Finally the position is then  

 
  
x(t) = x0 + vx ,0 t +

b0 t2

2
+

b1 t3

6
+

b2 t4

12
.  (4.6.20) 

 
 
Example 4.6 Bicycle and Car 
 
A car is driving through a green light at   t = 0  located at   x = 0  with an initial speed 

  
vc,0 = 12 m ⋅ s-1 . The acceleration of the car as a function of time is given by 
 

  
ac =

0; 0 < t < t1 = 1s

−(6 m ⋅ s-3)(t − t1); 1 s < t < t2

⎧
⎨
⎪

⎩⎪
. 

 
(a) Find the speed and position of the car as a function of time. (b) A bicycle rider is 
riding at a constant speed of   

vb,0  and at   t = 0  is  17 m  behind the car. The bicyclist 
reaches the car when the car just comes to rest. Find the speed of the bicycle. 
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Solution: a) We need to integrate the acceleration for both intervals. The first interval is 
easy, the speed is constant. For the second integral we need to be careful about the 
endpoints of the integral and the fact that the integral is the change in speed so we must 
subtract   vc (t1) = vc0  

  

vc(t) =

vc0; 0 < t < t1 = 1s

vc(t1)+ −(6 m ⋅s-3)( ′t − t1)
′t =t1

′t =t

∫ ; 1s < t < t2

⎧

⎨
⎪

⎩
⎪

. 

 
After integrating we get 

  

vc(t) =
vc0; 0 < t < t1 = 1s

vc0 − (3 m ⋅s-3)( ′t − t1)2

′t =t1

′t =t
; 1s < t < t2

⎧
⎨
⎪

⎩⎪
. 

 
Now substitute the endpoint so the integral to finally yield 
 

  
vc (t) =

vc0 = 12 m ⋅ s-1; 0 < t < t1 = 1 s

12 m ⋅ s-1 − (3 m ⋅ s-3)(t − t1)2; 1 s < t < t2

⎧
⎨
⎪

⎩⎪
. 

 
For this one-dimensional motion the change in position is the integral of the speed so 
 

  

xc(t) =
xc(0)+ (12 m ⋅s-1)dt

0

t1

∫ ; 0 < t < t1 = 1s

xc(t1)+ 12 m ⋅s-1 − (3m ⋅s-3)( ′t − t1)2( )
′t =t1

′t =t

∫ dt; 1s < t < t2

⎧

⎨

⎪
⎪

⎩

⎪
⎪

. 

 
Upon integration we have 
 

  

xc(t) =
xc(0)+ (12 m ⋅s-1)t; 0 < t < t1 = 1s

xc(t1)+ (12 m ⋅s-1)( ′t − t1)− (1m ⋅s-3)( ′t − t1)3( )
′t =t1

′t =t
; 1s < t < t2

⎧
⎨
⎪

⎩⎪
. 

 
We choose our coordinate system such that   xc (0) = 0 , therefore 

  xc (t1) = (12 m ⋅ s-1)(1 s)=12 m . So after substituting in the endpoints of the integration 
interval we have that 
 

  
xc (t) =

(12 m ⋅ s-1)t; 0 < t < t1 = 1s

12 m+(12 m ⋅ s-1)(t − t1) − (1 m ⋅ s-3)(t − t1)3; 1 s < t < t2

⎧
⎨
⎪

⎩⎪
. 
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(b) We are looking for the instant   t2  that the car has come to rest. So we use our 
expression for the speed for the interval   1s < t < t2 , 

  0 = vc (t2 ) = 12 m ⋅ s-1 − (3 m ⋅ s-3)(t2 − t1)2 . We can solve this for   t2 :   (t2 − t1)2 = 4 s2 . We 
have two solutions:   (t2 − t1) = 2 s  or   (t2 − t1) = −2 s . The second solution 

  t2 = t1 − 2 s = 1 s − 2 s = −1s  does not apply to our time interval and so 

  t2 = t1 + 2 s = 1 s + 2 s = 3 s . The position of the car at   t2  is then given by 
 

  

xc(t2 ) = 12 m+(12 m ⋅s-1)(t2 − t1)− (1m ⋅s-3)(t2 − t1)3

= 12 m+(12 m ⋅s-1)(2 s)− (1m ⋅s-3)(2 s)3 = 28 m.
 

 
Because the bicycle is traveling at a constant speed with an initial position   xb0 = −17 m , 
the position of the bicycle is given by   xb(t) = −17 m + vbt . The bicycle and car intersect 
at instant   t2 = 3 s :   xb(t2 ) = xc (t2 ) . Therefore   −17 m + vb(3 s) = 28 m . So the speed of the 
bicycle is 

  
vb =

(28 m + 17 m)
(3 s)

= 15 m ⋅ s-1 . 


